Combinatorial sums associated with balancing and Lucas-balancing polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Properties of Balancing and Lucas-Balancing $p$-Numbers

The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing $p$-numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.

متن کامل

On Pell, Pell-Lucas, and balancing numbers

In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.

متن کامل

Balancing Sums of Random Vectors

We study a higher-dimensional ‘balls-into-bins’ problem. An infinite sequence of i.i.d. random vectors is revealed to us one vector at a time, and we are required to partition these vectors into a fixed number of bins in such a way as to keep the sums of the vectors in the different bins close together; how close can we keep these sums almost surely? This question, our primary focus in this pap...

متن کامل

Assembly line balancing to minimize balancing loss and system loss

Assembly Line production is one of the widely used basic principles in production system. The problem of Assembly Line Balancing deals with the distribution of activities among the workstations so that there will be maximum utilization of human resources and facilities without disturbing the work sequence. Research works reported in the literature mainly deals with minimization of idle time i.e...

متن کامل

Some Congruences for Balancing and Lucas-balancing Numbers and Their Applications

Balancing numbers n and balancers r are solutions of the Diophantine equation 1 + 2 + . . . + (n 1) = (n + 1) + (n + 2) + . . . + (n + r). It is well-known that if n is a balancing number, then 8n2 + 1 is a perfect square and its positive square root is called a Lucas-balancing number. In this paper, some new identities involving balancing and Lucas-balancing numbers are obtained. Some divisibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathematicae et Informaticae

سال: 2020

ISSN: 1787-5021,1787-6117

DOI: 10.33039/ami.2020.10.002